© 1SO WG11 N103 - | SO/NWI 10303-14

INTERNATIONAL STANDARD © ISO ISO/NWI 10303-14

|ndustrial automation systems and integration —

Product data representation and exchange —
Part 14:

Description methods: The EXPRESS-X L anguage Reference
M anual

1. Scope

This part of 1SO 10303 defines a language by which relationships between data defined by models in
the EXPRESS language can be specified. The language is called EXPRESS-X.

EXPRESS-X is a structural data mapping language. It consists of language elements that allow an
unambiguous specification of the relationship between models.

The following are within the scope of this part of 1SO 10303:

Mapping data defined by one EXPRESS model to data defined by another EXPRESS model.

Mapping data defined by one version of an EXPRESS model to data defined by another version of
an EXPRESS model, where the two schemas have different names.

Specification of requirements for datatranslators for data sharing and data exchange applications.

Specification of alternate views of data defined by an EXPRESS model.

An alternate notation for application protocol mapping tables.

Bi-directional mappings where mathematically possible.

Specification of constraints evaluated against data produced by mapping.

The following are outside the scope of this part of SO 10303:
— Mapping of data defined using means other than EXPRESS.
— ldentification of the version of an EXPRESS schema.

— Graphical representation of constructs in the EXPRESS-X language.

| SO/NWI 10303-14 - WG11/ N103 © 180

2. Normativereferences

The following standards contain provisions that, through reference in this text, constitute provisions of
this part of 1SO 10303. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this part of 1SO 10303 are encouraged to inves-
tigate the possibility of applying the most recent editions of the standards indicated below. Members of
IEC and 1SO maintain registers of currently valid International Standards.

SO 10303-1:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles

SO standard 10303 part(11) version (3), Industrial automation systems and integration — Product
data representation and exchange — Part 11: Description methods: The EXPRESS language reference
manual.

3. Definitions

3.1 Termsdefined in SO 10303-1
This part of SO 10303 makes use of the following terms defined in SO 10303-1.

— data;
— information;

— information model.

3.2 Termsdefined in 1SO 10303-11
This part of 1SO 10303 makes use of the following terms defined in SO 10303-11.

complex entity data type;

complex entity (data type) instance;
— constant;

— entity;

— entity data type;

— entity (datatype) instance;

| ©1s0

WG11 N103 - | SO/NWI 10303-14

— instance;

— partial complex entity data type;

— partial complex entity value;

— population;

— simpleentity (datatype) instance;

— subtype/supertype graph;

— token;

— vaue.

3.3
3.3.1

3.3.2

3.3.3

3.34

3.35

3.3.6

3.3.7

3.3.8

3.39

Other definitions

binding extent: aset of binding instances constructed from instances in the source data sets and
view extents as required by the FROM language element of the VIEW or MAP declaration.

binding instance: an element of a binding extent.

sour ce data set: acollection of entity instances where each entity instance conformsto an entity
data type defined in the associated schema, and the collection conforms to the constraints of the
schema.

target data set: acollection of entity instances produced by means of mapping.

map: the declaration of arelationship between data of one or more source entity typesor view
data types and data of one or more target entity types.

networ k mapping: a mapping to many target entity instances.

qualified binding extent: a subset of the binding extent consisting of only those binding
instances satisfying the selection criteria of the view/map declaration.

selection criteria: EXPRESS logical expressions used to identify the qualified binding extent
from a binding extent.

source extent: aview extent or entity population used to create binding extent.

3.3.10 view: an alternative organization of the information in an EXPRESS model.

| 3.3.11 view datatype: the representation of aview.

3.3.12 view data typeinstance: anamed unit of information that is a member of the view extent estab-

lished by a view data type.

| SO/NWI 10303-14 - WG11/ N103 © 180

3.3.13view extent: an aggregate of view datatype instances that contains all instances that can be con-
structed from the qualified binding extent.

4. Conformance requirements

4.1 Formal specificationswritten in EXPRESS-X

4.1.1 Lexical language

A formal specification written in EXPRESS-X shall be consistent with a given level as specified below.
A formal specification is consistent with a given level when all checks identified for that level as well
as al lower levels are verified for the specification.

L evels of checking

Level 1. Reference checking. This level consists of checking the formal specification to ensure that
it is syntactically and referentialy valid. A formal specification is syntactically valid if it matches
the syntax generated by expanding the primary syntax rule (synt ax) given inAnnex A. A formal
specification is referentially valid if all references to EXPRESS-X items are consistent with the
scope and visibility rules defined in clauses 10 and11.

Level 2: Type checking. Thislevel consists of Level 1 checking and checking the formal specifica-
tion to ensure that it is consistent with the following:

— expressions shall comply with the rules specified in clausel?2 and in SO 10303-11:1994
clausel?;

— assignments shall comply with the rules specified in 1SO 10303-11:1994 clause 13.3.

Level 3: Value checking. Thislevel consists of Level 2 checking and checking the formal specifica-
tion to ensure that it is consistent with statements of the form, ‘A shall be greater than B’, as speci-
fied in clause7 to14 of 1SO 10303-11:1994. Thisislimited to those places where both A and B can
be evaluated from literals and/or constants.

Level 4: Complete checking. This level consists of checking the formal specification to ensure that
it is consistent with all stated requirements as specified in this part of 1SO 10303 and of 1SO 10303-
11:1994.

© 1SO WG11 N103 - | SO/NWI 10303-14

4.2 Implementations of EXPRESS-X

4.2.1 EXPRESS-X language parser

An implementation of an EXPRESS-X language parser shall be able to parse any formal specification
written in EXPRESS-X consistent with the conformance class associated with that implementation. An
EXPRESS-X language parser shall be said to conform to a particular checking level (as defined
in4.1.1) if it can apply all checks required by that level (and any level below it) to aformal specifica-
tion written in EXPRESS-X.

The implementor of an EXPRESS-X language parser shall state dl constraints that the implementation
imposes on the number and length of identifiers, on the range of processed numbers, and on the maxi-
mum precision of real numbers. Such constraints shall be documented for the purpose of conformance
testing.

4.2.2 EXPRESS-X mapping engine

An implementation of an EXPRESS-X mapping engine shall be able to evaluate and/or execute any
formal specification written in EXPRESS-X, consistent with the conformance class associated with that
implementation. The execution and/or evaluation of a mapping is relative to one or more source data
sets; the specification of how these data sets are made available to the mapping engine is outside the
scope of this part of 1SO10303.

The implementor of an EXPRESS-X mapping engine shall state any constraints that the implementa-
tion imposes on the number and length of identifiers, on the range of processed numbers, and on the
maximum precision of real numbers. Such constraints shall be documented for the purpose of conform-
ance testing.

4.3 Conformance classes

An implementation shall be said to conform to conformance classl if it processes all the declarations
that may appear in a SCHEMA _VIEW declaration.

An implementation shall be said to conform to conformance class2 if it processes all the declarations
that may appear inthis part of 1SO 10303.

5. Language specification syntax

The notation used to present the syntax of the EXPRESS-X language is defined in this clause.

| SO/NWI 10303-14 - WG11/ N103 © 180

The full syntax for the EXPRESS-X language is given in AnnexA. Portions of those syntax rules are
reproduced in various clauses to illustrate the syntax of a particular statement. Those portions are not
always complete. It will sometimes be necessary to consult AnnexA for the missing rules. The syntax
portions within this part of 1SO 10303 are presented in a box. Each rule within the syntax box has a
unique number toward the left margin for use in cross-references to other syntax rules.

The syntax of EXPRESS-X is defined in a derivative of Wirth Syntax Notation (WSN).
NOTE — Seeannex B for areference describing Wirth Syntax Notation.

The notational conventions and WSN defined in itself are given below.
syntax= { production }

production= identifier '=" expression '.'
expression=term{ '|'" term}
terme factor { factor }
factor= identifier | literal | group | option | repetition .
identifier= character { character }
literal = ''"'"" character { character } ''"''
group= ' (' expression ')’
option= "[' expression ']’
repetition="'{' expression '}’
— Theequal sign' =' indicates a production. The element on the | eft is defined to be the combination

of the elements on theright. Any spaces appearing between the elements of a production are mean-
ingless unless they appear within aliteral. A production isterminated by aperiod' . ' .

— The use of an identifier within a factor denotes a nonterminal symbol that appears on the left side
of another production. An identifier is composed of letters, digits, and the underscore character.
The keywords of the language are represented by productions whose identifier is given in upper-
case characters only.

— Theword literal is used to denote aterminal symbol that cannot be expanded further. A literal isa
sequence of characters enclosed in apostrophes. For an apostrophe to appear in aliteral it must be
written twice, i.e,, ' "' " .

— The semantics of the enclosing braces are defined below:
e curly brackets' { }' indicates zero or more repetitions;
e squarebrackets' []' indicates optional parameters;

e parenthesis' ()' indicates that the group of productions enclosed by parenthesis shall be used
asasingle production;

« vertical bar' | ' indicates that exactly one of the termsin the expression shall be chosen.

| ©1SO WG11 N103 - | SO/NWI 10303-14

The following notation is used to represent entire character sets and certain special characters which are
difficult to display:

— \ a represents any character from 1SO/IEC10646-1;

— \ nrepresents a newline (system dependent) (see clause 7.1.5.2 of 1SO 10303-11:1994).

6. Basic language elements

| 6.1 Overview

This clause specifies the basic elements from which an EXPRESS-X mapping specification is com-
posed: the character set, remarks, symbols, reserved words, identifiers, and literals.

The basic language elements of EXPRESS-X are those of the EXPRESS language defined in Clause 7
of 1SO10303-11, with the exceptions noted bel ow.

6.2 Reserved words

The reserved words of EXPRESS-X are the keywords and the names of built-in constants, functions,
and procedures. Any reserved word in EXPRESS (1S010303-11:1994) shall also be areserved word in
EXPRESS-X. The reserved words shall not be used as identifiers. The additional reserved words of
EXPRESS-X are described below.

In the case that a legal EXPRESS identifier is a reserved word in EXPRESS-X, schemas using that
identifier can be mapped by renaming the conflicting identifier using the AS keyword in the REFER-
‘ ENCE language element.

In addition to the keywords of EXPRESS defined in 1SO10303-11:1994, the following are keywords
of EXPRESS-X.

Tablel — Additional EXPRESS-X keywords

| | END_SCHEMA_MAP EACH END_TYPE_MAP END_MAP
MAP END_SCHEMA_VIEW IMPORT_MAPPING END_VIEW
| SOURCE IDENTIFIED_BY SCHEMA_MAP SCHEMA_VIEW
PARTITION TYPE_MAP VIEW
TARGET

| SO/NWI 10303-14 - WG11/ N103 © 180

7. Datatypes

7.1 Overview
The data types defined here as well as those defined in the EXPRESS language (clause8 of 1SO 10303-
11:1994) are provided as part of the language.

Every view attribute has an associated data type.

7.2 View datatype

View datatypes are established by view declarations (see clause 9.3). A view data type is assigned an
identifier in the defining schema map or schema view. The view data type is referenced by this identi-
fier.

Syntax:

127 view reference = [(schema_map_ref | schema_viewref) '.'] viewref

Rulesand restrictions:;
a view_ref shall be areferenceto aview visiblein the current scope.

b) view_ref shall not refer to areturn view (clause9.3.5).

EXAMPLE 1 — following declaration defines a view datatype named circle.

VI EW ci rcl e;
FROM (e : ellipse);
VWHERE (e. maj or_axis = e.pmnor_axis);

SELECT
radius : REAL := e.mnnor_axis;
center : point := e.center;
END VI EW

© 1SO WG11 N103 - | SO/NWI 10303-14

8. Fundamental principles

8.1 Overview
The reader of this document is assumed to be familiar with the following concepts, in addition to the
concepts described in clause5 of 1SO10303-11:1994.

EXPRESS-X provides for the specification of:
— alternative views of the data described by an information model described in EXPRESS;

— the transformation of data described by elements of source EXPRESS model sinto data described
by elements of target EXPRESS models.

A SCHEMA MAP provides declarations for the specification of the former and latter.

A SCHEMA VI EW provides declarations for the specification of the former.
NOTE — A SCHEMA_VIEW may betransformed into an EXPRESS model as described in Annex B.

The specification of atype map defines how data described by EXPRESS defined types may be trans-
formed between the source and target models.

EXPRESS function and procedure specifications may form part of an EXPRESS-X schema in order to
support the definition of views, maps, or type maps.

8.2 Typographical conventions

In this specification a binding instance is denoted as an ordered set of entity / view instance name sep-
arated by commas “,” and enclosed inangle brackets “<>". Entity instance names are defined in 1SO
standard 10303 part(21) clause7.3.4. View instance names are specified using the same syntax.

EXAMPLE 2 — Given the view declaration:

VI EW exanpl e;
FROM p: person, o : organi zation;

END_VI EW
the following may be binding instances:

<#1, #31>
<#2, #32>.

These binding instances may correspond to the following data presented as entity instances as defined in
I SO standard 10303 part (21):

I SO/NWI 10303-14 - WG11/ N103 © 180

#l=person(' James',' Smth');
#2=person(' Fredrick','Jones');
#31=organi zati on(' Engi neering');
#32=0organi zati on(' Sal es');

In this specification the data referenced by a binding extent may be presented in tabular form where the
left-most column identifies the binding instance. The uppermost column headings, excluding the left-
most column, identify express entity types or view data types. The lower headings identify the names of
attributes corresponding to the entity identified in the uppermost column under which it falls, or when
the heading cell contains ‘#, the entity instance name.

EXAMPLE 3 — Thisexampleillustrates the use of tables to depict a binding extent. The concept
of a binding extent is defined in subsequent clauses and is not necessary to understand the exam-
ple. The example uses the data defined in example2 and the following EXPRESS schema:

SCHEMA exanpl e_3;

ENTITY person;
first_name : STRI NG
| ast _name : STRI NG

END _ENTI TY;

ENTI TY organi zati on;
departnment _name : STRI NG

END_ENTI TY;

END_SCHEMA,
Bi ndi ng per son organi zati on
I nst ance -

first_nane | ast _nane # depart nent _nane
<#1, #31> || #1 ' Janes' "Smith' #31 ' Engi neering’
<#1l, #32> #1 ' Janes' "Smth' #32 ' Sal es'
<#2,#31> || #2 " Fredrick’ " Jones' #31 ' Engi neeri ng’
<#2, #32> || #2 " Fredrick’ " Jones’ #32 ' Sal es’

In this specification a view instance, target entity or target entity network corresponding to particular
binding instance is denoted by the name of the view declaration (/i ew_i d) or map declaration (
map_i d) of which it is amember followed by aleft parenthesis ‘(*, followed by the binding instance,
followed by aright parenthesis *)’.

8.3 Binding process

This specification defines alanguage and an execution model. The execution model is composed of two
phases. a binding process and an instantiation process. The evaluation of views and maps share a com-
mon binding process but differ with respect to instantiation. A binding is an environment in which

10

© 1SO WG11 N103 - | SO/NWI 10303-14

variables are given values during the instantiation process. Each binding instance provides a set of val-
ues to be assigned to the variables. The relationship between bindings and the source datais defined in
subseguent clauses of this specification.

8.4 Implementation Environment

The EXPRESS-X language does not describe an implementation environment. In particular,
EXPRESS-X does not specify:

how references to names are resolved;

how other schemas, schema views, or schema maps are known;

how input and output data sets are specified;

how mappings are executed for instances that do not conform to an EXPRESS schema.

The evaluation of a view (i.e. the application of the view to a source data set) produces a view extent.
Evaluation of amap may produce entity instances in the target data set. EXPRESS-X does not specify
what effect modification of source data may have on views and maps after their evaluation.

9. Declarations

9.1 Overview

This clause defines the various declarations available in EXPRESS-X. An EXPRESS-X declaration
creates a new EXPRESS-X item and associates an identifier with it. The item may be referenced else-
where by this identifier.

EXPRESS-X provides the following declarations:
— View;

- Map;

— Schema view;

— Schema_map;

— Type_map.

In addition, an EXPRESS-X specification may contain the following declarations defined in
1SO10303-11:1994:

11

| !SO/NWI 10303-14 - WG11/ N103 © 180

Constant;

Function;

Procedure;

Rule.

9.2 Binding extent declaration

9.2.1 Declaration of qualified binding extents

Syntax:

39 binding_decl =] fromclause] [where_clause] [identified_by_ clause

1.

A qualified binding extent is defined by identification and selection of binding instances.

The FROM language element defines the structure of instances in the binding extent. The FROM lan-
guage element consists of one or more source_parameter. Each source parameter associates identifiers
with an extent.

Syntax:
55 fromclause = FROM source_paraneter { ';' source_paraneter }
56 source_paranmeter = source_parameter_id {',' source_paraneter_id } '
extent _reference.

Rulesand restrictions:

a source_paraneter_i dsshall beunique within the scope of the map or view declaration.

The binding extent is computed as the cartesian product of instances in the extents referenced in the
FROM language element.

12

| ©1SO WG11 N103 - | SO/NWI 10303-14

EXAMPLE 4 — A binding extent is constructed over the entity extents of entity types item and
person.

SCHEMA exanpl e;
ENTITY item
item nunmber : | NTEGER;
END_ENTI TY;
ENTI TY person;
nane : STRI NG

END_ENTI TY;

END_SCHEMA;

VI EWi tenms_and_persons

FROMi : item p : person;

SELECT
item number : |INTEGER := i.part_nunber;
responsi ble : STRING : = p. nane;

END_VI EW

Given a population (written as 1SO 10303-21 entity instances):

#l=item 123);

#2=item(234);

#33=person(' Jones');

#44=person(' Snmth');

the corresponding binding extent is; <#1,#33>,<#1,#44> <#2 #33>,<#2 #44>.

The VWHERE language element defines a selection criteria on binding instances. The WHERE language
element, together with the source extents identified in the FROMlanguage element define the qualified
binding extent. A binding instance in the binding extent is a member of the qualified binding extent
| unless one or more domain rule expressions of the WHERE language element evaluates to FALSE for
the application of that expression to the binding instance.

The syntax of the WHERE language element i s as defined in 1SO 10303-11;1994, clause 9.2.2.2.

EXAMPLE 5 — The following example extends the VIEW declaration of Examplel2 by an
WHERE language element to filter specific persons and to join items and persons.

VI EWitens_and_persons;
FROMi : item p : person;
VWHERE (p.nane = '"smith') OR (p.nane = 'jones');
(i .approved_by = p.nane);
SELECT
name : STRING : = p. nane;
END_VI EW

After the evaluation of the WHERE language element predicates, the output stream will be modified as fol-
lows: all grey boxes will be filtered out.

13

| SO/NWI 10303-14 - WG11/ N103 © 1SO

Bi ndi ng item item version ddi d per son

I nst ance

id ver si on |approved_by id ddi d id nanme

<#l, #3, #5,#6>|[#1 | i _1 #3 smth #3] iv_1 #5 ||[#5| ddid_1 (|#6| smth
<#1,#3, #5, #7>||#1| i 1 #3 snith #3| iv_1 | #5 ||#5| ddid_1 ||#7]| jones
<#1, #3,#5,#8>|[#1 | i 1 #3 smth #3| iv_1 #5 [|#5| ddid_1(|#8|mller
<#2, #4, #5, #6> ||#2 | i _2 #4 j ones #4| iv_2 #5| ddid_1 [[#6| smith
<#2, #4, #5, #7> ||#2 | i _2 #4 j ones #4l iv_2 #5| ddid_1 |[#7 | jones
<#2, #4,#5, #8> |[#2 [i _2 #4 j ones #4 | iv_2 #5 | ddid_1 |[#8|mller

9.2.2 ldentification of view and target instances

The | DENTI FI ED_BY declaration defines an equivalence relation between instances in a qualified
binding extent.

Two qualified binding instances are in the same equivalence class if, for each element of the
IDENTIFIED_BY clause, evaluating the expression in the context of each of those instances produces
result that are instance equal (1SO 10303-11;1994 clause 12.2.2) [NOTE we should really reference our
own extended instance equality here].

14

EXAMPLE 6 — Thisexampleillustrates the use of IDENTIFIED_BY .

VI EW depart nent ;

FROM e : enpl oyee;

| DENTI FI ED_BY e. depart ment _narme;

SELECT
name : STRING : = e.departnent _nane;

END_VI EW
ENTI TY enpl oyee;

nane : STRI NG

departnment _name : STRI NG
END_ENTI TY;

END_VI EW
#1=enpl oyee(' Jones', ' Engi neering');

#2=enmpl oyee(' Smth',' Sal es');
#3=enpl oyee(' Doe', "' Engi neering');

Given the view and population above, there are two equivalence classes: {#1,#3} and {#2}.

| ©1SO WG11 N103 - | SO/NWI 10303-14

Syntax:

57 identified by clause = | DENTI FI ED_BY expression { ',' expression } ';"'.

Rules and restrictions:

a) Anexpression inanIDENTIFIED_BY language element shall not refer, through any level
of indirection, to the targets of the map or any of their attributes

9.3 Viewdeclaration

9.3.1 Overview

A view declaration creates a view data type and declares an identifier to refer to it.

EXAMPLE 7 — The following view collects the information about persons serving in roles
within organizations. Thisinformation is collected from two instances of person_and_organization
and cc_design_person_and_organization_assignment. The two instances shall be related via the
assigned_person_and_organization attribute of the
cc_design_person_and_organization_assignment.

VI EW arm person_rol e_i n_organi zati on;
FROM pao : person_and_organi zation;
ccdpaoa : cc_design_person_and_organi zati on_assi gnnent;

WHERE ccdpaoa. assi gned_person_and_organi zati on :=: pao;
SELECT

person : person := pao.the_person;

org : organization : = pao.the_organizaion;

role : label := ccdpaoa.role.nane;
END_VI EW

Syntax:

120 view decl = VIEWview id [: base_type][supertype_rule] |
subtype_of clause] ';' (view_ partitions | view decl_body) END VI EW

124 view partition
121 view decl _body

PARTI TION partition_id ';"' view decl _body .
bi ndi ng_decl view project_cl ause .

Rules and restrictions:

a) If in aview_decl a subtype of clause is specified, no from_clause shall be declared in the
vi ew_decl| _bodysof any partition.

| b) If no subtype of_clause is specified, the from_clause is required in every view_decl_body of

15

| SO/NWI 10303-14 - WG11/ N103 © 180

that view_decl.

¢) Only areturn view, clause9.3.5, shall specify abase typein view_decl.

9.3.2 View attributes

An attribute of a view data type represents a property of the view whose value is computed as the eval-
uation of itsvi ew_attr _assgnmnt _expr, an expression.

The name of a view attribute (/i ew_attri bute_i d) represents the role played by it associated
value in the context of the view in which it appears.

The expression represented by avi ew_at tr _assgnnt _expr isevaluated in the context of a quali-
fied binding instance in the qualified binding extent.

If an equivalence class defined by an IDENTIFIED_BY language element contains more than one qual -
ified binding instance, then the value of the view_attr_assgnmt_expression is computed as follows:

— If for each such binding, the evaluation of the view attr_assgnm _expr (or
map_attr_assgnmt _expr inthe case of a MAP) of the attribute produces an equal value, that
value is assigned to the attribute.

— If for two or more bindings, the evaluation of the view attr_assgnnt _expr (or
map_attr_assgnnt _expr inthe case of aMAP) of the attribute produces unequal values, the
indeterminate value is assigned to the attribute.

EXAMPLE 8 — This example illustrates the assignment of values where an equivalence class
contain more than one qualified binding instance.
(* source schema *) (* target schemn *)
SCHEMA src; SCHEMA t ar;
ENTI TY enpl oyee; ENTI TY departnent;
name : STRI NG enpl oyee : STRI NG,
manager : STRI NG manager : STRI NG
dept : STRING nanme : STRI NG
END_ENTI TY; END_ENTI TY;
END_SCHEMA; END_SCHEMA;

16

© 1SO WG11 N103 - | SO/NWI 10303-14

(* mapping schem *)

SCHEMA_MAP;

SOURCE src; TARCET tar;

MAP departnent_map AS d : departnent
FROM e : src. enpl oyee

| DENTI FI ED_BY e. dept;

SELECT
d. nane : = e. dept;
d. manager := e.nmnager;
d. enpl oyee : = e. naneg;
END_MAP;

END_SCHEMA MAP;

#l=enpl oyee(' Smth',' Jones',' Marketing');
#2=enmpl oyee(' Doe', ' Jones',' Marketing');

Given the data above the target data set contains one entity instance, #1=department(?,’ Jones,'Marketing’). The
attribute department.employee is indeterminate because the expression for this attribute evaluates to two different

values ('Smith' and 'Dog).

Syntax:

expression)

115 view attribute_decl = view attribute_id ':' [source_schenma_ref
base type ': =" view attr_assgnnt_expr ';

113 view attr_assgnnt _expr = expression | choice_expr | inline_view decl
vi ew_cal |

126 view project_clause = (SELECT view attr_decl _stm _list) | (RETURN

114 view attr_decl _stm list = view attribute_decl { view attribute_decl

}

Rules and restrictions:

a) Thevi ew attr_assgnm _expr shall be assignment compatible with the data type of the

view attribute.

b) Each view_attribute _id declared in the view declaration shall be unique within that declaration.

9.3.3 View partitions

A view extent may be partitioned. The extent of a view that is partitioned i s the concatenation o the
extents defined by its partitions, each partition defining its own FROM language element and selection

criteria. Partitions, if present, shall be named. A parti ti on_i d namesa partition.

17

| !SO/NWI 10303-14 - WG11/ N103 © 180

EXAMPLE 9 — In IS0 10303-201, the application object or gani zat i on may be mapped to
either aper son, anor gani zati on, or both aper son_and_or gani zat i on entity in the
AIM. Thisis specified in EXPRESS-X as follows:

VI EW ar m_or gani zati on
PARTI TI ON a_si ngl e_person;
FROM p : person;

PARTI TI ON a_si ngl e_organi zati on;
FROM o: organi zati on;

PARTI TI ON a_person_i n_an_organi zati on;
FROM po: person_and_organi zati on;

END_VI EW

Syntax:
124 view partition = PARTITION partition_id ';' view decl_body .

Rulesand restrictions:

a) All partitions of a VI EWdeclaration shall define the same attributes (including names and
types)
b) The attributes of a VI EWdeclaration shall appear in the same order in each of its partitions.

9.3.4 Constant partitions

A partition that omits the FROM, WHERE, and IDENTIFIED_BY clauses is called a constant parti-
| tion. Such a partition represents a single view instance in the result with no correspondence to the
source data.

EXAMPLE 10 — Thisexample illustrates the use of constant partitions.

VI EW per son;
PARTI TI ON mary;
SELECT

name : STRING := 'Mary';
age : | NTEGER : = 22;

PARTI TI ON j ohn;
name : STRING := 'John';
age : | NTEGER : = 23;

END_VI EW

18

© 1SO WG11 N103 - | SO/NWI 10303-14

9.3.5 ReturnViews
A view whose body begins with the RETURN keyword in its body computes aBAG d values. One

value is computed for each instance of the qualified binding extent by evaluating the expression follow-
ing the RETURN keyword. A return view does not define a new type. All of the values computed must
be mutually type compatible with each other and with the type thatoptionally may be specified directly
after the name of the view.
Rules and restrictions:

a) A returnview shall not use the SELECT language element in any partition.

b) A return view shall not specify the subtype of clause language element.

EXAMPLE 11 — EXAMPLE. This example defines a bag whose members are instances of the

type car that have the value 'red' in their color attribute.

VIEWred_car;

FROM rc: car;
WHERE rc.color ='red";
RETURN rc;
END_VI EW
EXAMPLE 12 — EXAMPLE. This example defines a bag whose members are strings. The

strings come from two sources.

VI EW owner _nane : STRI NG
PARTI TI ON one;
FROM po: person;
RETURN po. namne;
PARTI TI ON t wo;
FROM or: organization;
RETURN or . nane;
END_VI EW

9.3.6 Specifying subtypeviews

EXPRESS-X allows for the specification of views as subtypes of other views, where a subtype view is
a specialization of its supertype. This establishes an inheritance (i.e., subtype/supertype) relationship
between the views in which the subtype inherits the properties (i.e., attributes and selection criteria) of
its supertype. A view is a subtype view if it contains a SUBTYPE declaration. The extent of a subtype
view is asubset of the extent of its supertype as defined by the selection criteria defined by the WHERE
language element in the subtype.

A subtype view inherits attributes from its supertype view(s). Inheritance of attributes shall adhere to
the rules and restrictions of attribute inheritance defined in 1SO 10303-11;1994 clause 9.2.3.3.

19

I SO/NWI 10303-14 - WG11/ N103 © 180

A subtype view declaration may redefine attributes found in one of its supertypes. The redefinition of
attributes shall adhere to the rules and restrictions of attribute redefinition defined in 1SO 10303-
11;1994 clause 9.2.3.4.

A view instance shall be created if the selection criteria of the most general supertypeis satisified. The
view instance shall have the type corresponding to a subtype view if all of the selection criteria condi-
tions in the subtype view in addition to all of its supertype views evaluate to TRUE or UNKNOWN.

Syntax:

102 subtype_of clause = SUBTYPE OF ' (' view or_map_reference { '
view or_map_reference } ")’

Rulesand restrictions:

a) A view declaration shall contain either a FROM language element or a subtype language ele-
ment, but not both.

b) A subtype view shall not specify the IDENTIFIED_BY lanaguage element.
c) Exactly one supertype view of a subtype view shall define a FROM language element
d) The partitions of a subtype view shall be a subset of the partitions of its supertype view.

€) A subtype view shall not use the return language element.

EXAMPLE 13 — Thefollowing view illustrates subtyping. The view mal e defines an additional
membership requirement (gender = * M) for view instances of the subtype.

VI EW person;
FROM e: enpl oyee;
END_VI EW

VI EW mal e SUBTYPE OF (person);
WHERE e.gender = 'M;

END_VI EW
EXAMPLE 14 — This exampleillustrates the use of partitions and subtype views.

VIEW]| ;

PARTI TI ON first:
FROM s:three, t:four
VWHERE cond6;

PARTI TI ON second:
FROM r: four, q:five
VWHERE cond7;

END VI EW

20

© 1SO WG11 N103 - | SO/NWI 10303-14

VI EW k SUBTYPE OF (j);
PARTI TI ON second:
VWHERE cond9;

END_VI EW

Any subtype view for which ‘k’ is a supertype can only include partition ‘ second’.

9.3.7 SUPERTYPE constraints

A view declaration may define SUPERTY PE constraints (1SO standard 10303 part (11) clause9.2.4).
Whether or not a SUPERTY PE constraint is satisfied has no effect on the execution model or content of
view extents.

EXAMPLE 15 —

VI EW a ABSTRACT SUPERTYPE OF ONEOF(b ANDOR c, d);

END_VI EW

An instance of ‘@ isvalid if it has at least two types (‘a and something else) because of the ABSTRACT
keyword, and one of the other typesis either ‘d’ or some combination of ‘b’ and ‘¢’ because of the ONEOF

keyword.

9.4 Map declaration

9.4.1 Overview

The MAP declaration supports the specification of correspondence between semantically equivalent
elements of two or more EXPRESS model s possessing differing structure. Each MAP declaration speci-
fies how source schema entity i nstances of one or more types are to be mapped to target instances.

A map declaration supports, in a single declaration, the mapping from many source entities to many tar-
get entities.

Syntax:
67 map_decl = MAP nap_id AS target _paraneter { target_ paraneter } (
(map_decl _body { map_partitions }) | map_decl _body) END MAP ';'
71 map_partition = PARTITION partition_id ':' map_decl _body .

68 map_decl body = [subtype_of clause] binding decl {
entity instantiation_loop } map_project_clause .
104 target_paraneter = [target_paraneter _id { ',' target_paraneter _id }
] [AGGREGATE [bound_spec] O] target_entity reference '

The header identifies one or more entity types defined in the target EXPRESS schema to be created
upon evaluation.

21

| SO/NWI 10303-14 - WG11/ N103 © 180

A target entity type shall not be mapped in more than one MAP declaration in which the headers of those
declarations consist only of a single target entity type. However, one target entity can be mapped in
more than one MAP declarations (say n), if n-1 MAP declarations are network mappings. The MAP dec-
laration is named (map_i d).

NOTE — A singletarget entity type may be mapped in various ways by means of partitions.

EXAMPLE 16 — In the example below, a pump in the source data model is mapped to a product
and product_related product_category.

MAP networ k for_punp AS pr : product;
prpc : product _rel ated_product _cat egory;
FROM p : pump
pr.id := p.id;

pr.nanme : = p.nane,;
prpc. name : = 'punp';
prpc. products := [pr];
END_MAP;

Theinitial values of the attributes of the newly created instance(s) are indeterminate.

9.4.2 Evaluation of the MAP body

The MAP declaration may define a SELECT language element consisting of either an extent reference
or a number of target attribute assignment statements. Alternatively, the SELECT language element
may be omitted entirely:

— A SELECT language element specifying a source_parameter_id sgnifies that the instances of the
corresponding extent are to be mapped identically. (i.e. such that they are value equal to instances
in the source extents).

— A SELECT language element specifying target attribute assignment statements
(map_attribute_decl arations) is used to assign values to the attributes of the target
entity instances.

— If the SELECT language element is omitted, entity instances value equal to those specified in the
FROM language element are created on evaluation.

22

© 1SO WG11 N103 - | SO/NWI 10303-14

Syntax:

73 map_project_clause = (SELECT map_attr_decl _stnt _list) | (RETURN
expression)

64 map_attr_decl _stnmt _list = map_attri bute_declaration {
map_attri bute_declaration }

65 map_attribute_declaration = [target_paraneter_ref [index_qualifer]
[group_qualifier] '."] attribute_ ref [index_qualifier] ':=
map_attr_assgnmt _expr

Themap_attr_assgnnt expr shall produce avalue that is assignment compatible with the target
entity attribute (see 1SO10303-11;1994 clause 13.3).

The syntactic form:
SELECT source_paraneter_id

declares that an entity instance value equivalent to that bound to sour ce_parameter _id shal
appear in the target data set.

The syntactic form
SELECT map_attr_decl _stnt _|ist

assigns values (rap_attr _assgnnt _expr) to the target entity attributes (I-values) identified by
the syntactic form of the left-hand side of map_attri but e_decl arati on (i.e, beforethe’ : =").

A map_attr_decl _stm _|ist may assign to the multiple elements of an aggregate of a target
entity type. The order of execution of the attribute assignments in this case is arbitrary.

9.4.3 Instantiation of aggregates

Evaluation of a map may produce aggregates of target entity types. The declared type returned in this
situation is AGGREGATE. Theinitial value of the aggregate isindeterminant.

Syntax:

104 target_paranmeter = [target_paraneter_id { ',' target_paraneter_id }
] [AGGREGATE [bound_spec] CGF] target_entity reference '

Rules and restrictions:

a) If bound_spec isspecified it istreated as a constraint.

23

| SO/NWI 10303-14 - WG11/ N103 © 180

EXAMPLE 17 — Body of a MAP declaration with attribute assignments of multiple target
instances of the same entity.

MAP connecti on_zone_shapes AS
pdr : AGGREGATE OF ai m property _definition_representation;
sr . AGGREGATE OF ai m shape_representation;
FROM cz : arm connection_zone;
FOR EACH shape IN cz.zone_shape | NDEXI NG i ;

SELECT
sr[i].name := 'zone shape';
pdri].definition := pd@onnecti on_zone_map(cz);
pdr[i].used_representation := sr[i];
END_MAP;

9.4.4 Iteration under asingle binding instance

9441 Overview

Theinstantiati on_| oop_control andrepeat _control providestwo mutually exclusive
forms of iteration: iteration over the collection of instances in an EXPRESS aggregate; and interaction
incrementing a numeric variable. The latter of these, provided by r epeat _cont r ol isdescribed in
SO 10303-11; 1994

Syntax:
46 entity_instantiation_loop = FOR instantiation_|loop_control ';’
62 instantiation_|loop_control = instantiation_foreach_control |
repeat _control
61 instantiation_foreach _control = EACH variable_id IN
source_attribute_reference [I NDEXING variable_id] { AND variable_id
IN source_attribute_reference [| NDEXING variable_id] }

Rulesand restrictions:

a) variable id after the keyword EACH is of the same type as the elements of
source_attribute reference.

b) variable id after the keyword INDEXING is of type NUMBER with values greater than one.
9.4.4.2 Control by numericincrement

The FOR repeat control allows for the iteration under a single binding instance by means of the
EXPRESSr epeat _control .

24

© 1SO WG11 N103 - | SO/NWI 10303-14

EXAMPLE 18 — This example illustrates the use of the EXPRESS r epeat _control in
Express-X target instantiation. A collection of target child entity instances are created for each
source parent entity. The number created is specified by the parent entity attribute
number_of children.

SCHEMA sour ce; SCHEMA t ar get ;

ENTI TY parent; ENTI TY parent;

nunber _of _children : | NTEGER; END _ENTI TY;

END_ENTI TY; ENTITY chil d;

END_SCHEMA; parent : parent,;
END_ENTI TY;
END_SCHEMA;

SCHEMA MAP exanpl e;
SOURCE src : source;
TARGET tar : target,;

MAP tp AS tar.parent;

FROM sp : src. parent;

END_MAP;

MAP children_map AS ¢ : AGGREGATE [0:?] OF tar.child;
FROM p : src. parent;

FOR i := 1 TO p.nunber_of _children
SELECT

c[i].parent := p;
END_MAP;

END_SCHEMA_MAP;

EXAMPLE 19 — We assume that for each source instance of item exactly three corresponding
target instances have to be generated. That is specified in the following mapping specification.

ENTITY itemw th_duplicates;
id: STRING,
i ndex : | NTEGER;

END_ENTI TY;

MAP i wd AS AGGREGATE [3:3] OF itemw th_duplicates
FROM i : item

FOR var := 1 TO 3
SELECT
id:=1i.id;
i ndex := var;
END_MAP;

25

ISO/NWI 10303-14 - WG11/ N103 © 1SO
itemw th_duplicates
id
item item version ddi d
id |[its_version [approved_ by id its_ddi i d
d
oxO01||#1|i _ #3 snith #3| iv_1 #5 #5|ddid_1
Ox02(|#1]i _ #3 smth #3| iv_1 #5 #5(ddid_1
ox03||#1|i _ #3 snmith #3| iv_1 #5 #5|ddid_1
ox04||#2|i _ #4 j ones #4| iv_2 #5|ddid_1
Ox05|(#2| i _ #4 j ones #4| iv_2 #5|ddid_1
0Ox06|[#2|i _ #4 j ones #4| iv_2 #5|ddid_1

9.4.4.3 Control by iteration over an aggregate

Under the i nst anti ati on_foreach_control, at each iteration step, the next element of the
source attribute is bound to a variable and optionally the index position of that element is bound to an
iterator variable. The scope of these variable bindings includes the map_proj ect _cl ause. For
example, for each element of the source attribute of type aggregate a target instance can be generated
and the element value can be assigned to a corresponding target attribute of type.

EXAMPLE 20 — Inthefollowing example, all item versions of one item are grouped together in
the source data model. In contrast, each item version is a stand-alone instance in the target data
model. This example shows that the FOR loop specifies an iteration over the elements of the
source attribute i t em wi t h_versi ons. i d_of _versi ons. For each source instance and
for each element in that attribute a target instance is created. The target attribute i t em_i d is
mapped in the same way for all the target instances which of i t em ver si on which correspond
to the same underlyingi t em wi t h_ver si ons. Thetarget attributever si on_i d isassigned
to the value of the iterator variable ver si on_i t er at or.

ENTITY item version;

--target data nodel

itemid STRI NG,
version_id : STRI NG

END_ENTI TY;

ENTITY itemwi th versions; -- source data nodel
id STRI NG,

id of versions

END_ENTI TY;

26

LI ST OF STRI NG

© 1SO WG11 N103 - | SO/NWI 10303-14

MAP iv : AGGREGATE [0:?] OF item.version

FROMiw : itemw th versions;

FOR EACH version_iterator OF iw.id_of _versions | NDEXI NG i
SELECT

iv[i].item.id = iw.id;
iv[i].version_id := version_iterator;
END_MAP;

For example, the following target instances are built from the source instance below.
Source instance set:

#1 itemw th_versions(1,(10,11,12));
Target instance set:

#1 = item.version(1,10);
#2 = itemyversion(1,11);
#3 = itemversion(1,12);

9.4.5 Partitionswithin a MAP declaration

A singletarget entity may berelated in a specific way to source data for some instances and differently
to source data for some other instances. Map partitions may be used to specify these differing relations.
A MAP declaration may be partitioned, each partition defining its own FROM language element and
selection criteria. Partitions, if present, shall be named. A parti ti on_i d names a partition.

If multiple target entities are listed in the header of the MAP declaration, different subsets of those enti-
ties may be created by each partition.

Syntax:

71 map_partition = PARTITION partition_id ':' map_decl_body .

Rules and restrictions:

a) Thepartition_id shal be unigue with respect to the inheritance hierarchy of the corre-
sponding target entity.

b) For every target entity declared in the map header, at least one partition shall be defined to cre-
ate instancesfor it.

27

| SO/NWI 10303-14 - WG11/ N103 © 180

EXAMPLE 21 — Thisexampleillustrates how various source entity types may be mapped into a
single target entity type using a MAP declaration containing partitions.

(* source schema *) (* target schema *)
SCHEMA sr c; SCHEMA t ar;
ENTI TY student; ENTI TY person;
name : STRI NG name : STRI NG

END_ENTI TY; END_ENTI TY;
ENTI TY enpl oyee; END_SCHEMA,

name : STRI NG
END_ENTI TY;
END_SCHEMA;

(* mappi ng schema *)
SCHEMA MAP exanpl e;
MAP st udent _enpl oyee_to_person AS p : tar.person;
PARTI TI ON st udent;
FROM s : src.student;
SELECT

p. nanme : = s.nane;
PARTI TI ON enpl oyee;
FROM e : src. enpl oyee;
SELECT

p. nane : = e.nane;
END_MAP;

9.4.6 Mappingto an entity type and its subtypes

EXPRESS-X allows for the specification of a map as a subtype of another map. Subtype map declara-
tions may extend the collection of entity instances created by its supertype map, specialize those
instances created and require additional selection criteria beyond those specified in the supertype map.
The specification of atarget attribute assignment declared in a supertype map isinherited by its subtype
maps. Through this means the pattern of inheritance present in the target schema can be duplicated in
the mapping declarations.

Whether a subtype map extends the collection of entity instances created by its supertype map or spe-
cializes those instance created depends on whether the subtype map references target_parameter_ids
declared in the supertype map or whether it declare its own target_parameter_ids:

— If amap’s selection criteria and that of al its supertype maps is satisfied, the map may execute.

— A subtype map may reference in its map_decl _header atarget parameter that is declared in
any of its supertype maps. The type created is the composition of types identified by the subtype
map target parameter and all supertype maps declaring atarget parameter with this target parame-
ter id.

— A subtype map may introduce a target_parameter_id that is not defined in any of the supertype

28

| ©1SO WG11 N103 - | SO/NWI 10303-14

maps. In this case a new target entity of the type defined by the target parameter is created.
— Rulesand Restrictions:

— The type combination must be one that is valid in the target schema.

EXAMPLE 22 — A mapping schema illustrating the assignment to attributes declared in super-
types and subtypes through supertype and subtype maps. Source entities are of one type,
s _project. Target entities are of type t _project and perhaps one of its subtypes,
i n_house_project and external _project. The target_parameter_id, tp, used in the
supertype map (project_map) is used again in its subtype maps (in_house_map, ext_map) signify-
ing that the corresponding target entity is specialized in the subtype maps.

SCHEMA source_schenms;
ENTITY s_project;
name : STRI NG
project _type : STRING
cost : | NTEGER;
price : | NTEGER;
vendor : STRI NG
END_SCHEMA;

SCHEMA t arget _schenms,;

ENTITY t_project;

SUPERTYPE OF (ONEOF (i n_house_project, external project));
name : STRI NG

cost : | NTEGER
managenment : STRI NG
END_ENTI TY;

ENTITY in_house_project;

SUBTYPE OF (t_project);

END_ENTI TY;

ENTI TY external _project;

SUBTYPE OF (t_project)
price : | NTEGER;

END_ENTI TY;

END_SCHEMA,;

29

| SO/NWI 10303-14 - WG11/ N103 © 180

MAP project_map AS tp : target_schema.t_project;
FROM p : source_schema.s_project;

SELECT
t p. name : = p. nane;
tp.cost := p.cost;
END_MAP;

MAP in_house_map AS tp : target_schema.in_house_project;
SUBTYPE OF project_map;

WHERE (p.project_type = 'in house’);
SELECT
t p. mranagenent := CHO CE (cost < 50000) THEN 'small accts’

ELSE ' I arge accts’ ENDIF;
END_MAP;

MAP ext _map AS tp : target _schemm. external project;
SUBTYPE OF project_nmap;
WHERE (p. project_type = "external’);
SELECT
tp.price := p.price;
t p. mnagenent = p.vendor;
END_MAP;

9.4.7 Explicit declaration of complex entity data types

Complex entity data types (see 1SO10303-11:1994, clause3.2.1) may be explicitly declared in the map
header. A complex entity data type is referenced by an expression that lists the partial complex entity
data types that are combined to form it, separated by ‘& .

The partial complex entity data types may be listed in any order.

Any partial complex entity data types that are included in another partial complex entity data type via
inheritance are not listed.

Syntax:

44 conplex_entity _spec = entity reference '& entity reference { '&
entity reference }

Rulesand restrictions:
a) Each entity_ref shall be areference to an entity which isvisible in the current scope.

b) The referenced complex entity data type shall describe a valid domain within some schema (see
1S0O10303-11:1994, annexB).

30

© 1SO

WG11 N103 - | SO/NWI 10303-14

c) A given entity_ref shall occur at most once within a complex_entity_ref.

d) For each entity reference declared in the complex_entity spec, none of its supertype shall be

declared.

9.5 Schema view declaration

A schema_view declaration defines acommon scope for a collection of related mapping declarations. A

schema_view may contain the following kinds of declarations:
constant declaration ();

function declaration (clause9.6);

procedure declaration (clause 9.7);

rule declarations (clause 9.11);

view declaration (clause 9.3).

The order in which declarations appear within a schema_view declaration is not significant.

Declarations in one schema _view or EXPRESS schema may be made visible within the scope of
another schema _view via an interface specification as described in clause 13.

Syntax:

95 schema_vi ew_decl
reference_cl ause_extended } [constant_decl
schema_vi ew_body_el enent _|i st END_SCHEMA VI
reference_cl ause_ext ended
resource_or_renanme {

schema_vi ew_body_el enent

82

93 = function_decl |

SCHEMA VI EW schenma_vi ew_

id {
]
EW:' ;"

REFERENCE FROM foreign_ref [' ('
resource_or_renanme } ")] ;"'

procedure_decl | view decl

EXAMPLE 23 — ap203_arm names a schema_view that may contain declarations defining a
view over the schema config_control_design in terms of the domain expert’s understanding of the

information requirements.

SCHEMA VI EW ap203_arm

REFERENCE FROM confi g _control design;
VI EW part _version ...

(* other declarations as appropriate *)
END_SCHEMA_ VI EW

31

| !SO/NWI 10303-14 - WG11/ N103 © 180

9.6 Schema_map declaration

A schema_map declaration defines a common scope for a collection of related mapping declarations.

EXAMPLE 24 — i ges2st ep namesaschema_map that may contain declarations for trans-
lating geometry defined using an EXPRESS model base upon IGES into a model based on SO
10303-203.

SCHEMA MAP i ges2st ep;

TARGET step_schenm;

SOURCE i ges_express_schens;

MAP i ges_structure ...

(* other declarations as appropriate *)
END_SCHEMA MAP;

The order in which declarations appear within aschema_nmap declaration is not significant. In partic-
ular, the order of the declarations has no effect upon the resulting mapping.

Declarationsin one schema_nmap may be made visible within the scope of another schema_rmap via
an interface specification as described in clausel3.3.3

A schema_map may contain the following kinds of declarations:

constant declaration (clause9.5);
— function declaration (clause9.6);
— procedure declaration (clause9.7),
— type_map declaration (clause9.8);
— view declaration (clause9.3);

— map declaration (clause9.4);

— rule declaration (clause 9.11).

32

© 1SO WG11 N103 - | SO/NWI 10303-14

Syntax:

87 schema_map_decl = SCHEMA MAP schema_nap_id target_interface_spec {
target _interface_spec } source_interface_spec { source_interface_spec
} { map_interface_spec } { type_mapping_stm } [constant_decl]
schema_map_body_el ement _|ist END SCHEMA MAP ' ;' .

108 target_interface_spec = TARGET schema_ref_or_renane [REFERENCE
resource_or_renanme { ',' resource_or_rename }] ';' .

100 source_interface_spec = SOURCE schema_ref_or_renane [REFERENCE
resource_or_renanme { ',' resource_or_rename }] .

69 map_interface_spec = | MPORT_MAPPI NG schema_map_or _view ref _or_renane [
REFERENCE resource_or_renanme { ',' resource_or_rename }] .

111 type_mapping_stm = TYPE_MAP type_reference FROM type_reference '
type_map_stm _body type_map_stnt _body END TYPE_MAP ' ;'

85 schema_map_body_el enment = function_decl | procedure_decl | view decl |
map_decl | create_map_decl

The body of a schema_map shall have the same form as the body of a schema in SO 10303-
11;1994, with the following exceptions:

— Theschema_map shall include at least one MAP declaration.
— Theschema_map shall includeat arget i nt erface_spec declaration.
— Theschema_map shall includeasource_i nt erf ace_spec declaration.

— Theschema_map shall not include the i nt erface_speci fi cati on declaration (defined
in 1SO 10303-11;1994).

— Theschema_map shall notincludetheent ity declaration (definedin SO 10303-11;1994).

— Theschema_map shall notincludethet ype declaration (defined in 1SO 10303-11;1994).

EXAMPLE 25 — Thisexampleillustrates the use of required EXPRESS-X declarations. t 1,t 2,
t 3, s1 and s2 designate EXPRESS schema. ot her _map designates an EXPRESS-X schema.

SCHEMA_MAP map_nane,
TARGET t1, t2, t3;
SOURCE s1, s2;

| MPORT MAPPI NG ot her _map;

END_SCHENMA MAP;

9.7 Createdeclaration

The CREATE declaration defines the form of an entity that, subject to alogical expression, shall be cre-
ated in the target data set The | ogi cal _expr essi on is evaluated against entity extents identified
in the target _entity_reference. If the | ogi cal _expressi on does not evaluates to

33

| SO/NWI 10303-14 - WG11/ N103 © 180

FALSE orif nol ogi cal _expr essi on isspecified, an entity shall be created in the target data set.
If the logical _expression evaluates to the indeterminate value, the behaviour is undefined.

Syntax:
45 create_map_decl = CREATE instance_id ':' target_entity reference ';"' |
WHERE | ogi cal _expression ';'] nmap_attr_decl _stnt _|ist END CREATE ';'

Rules and restrictions:
a) The CREATE declaration shall not be used except within the scope of a schema map.
b) | ogi cal _expressi on shall evaluateto either aLOG CAL value or indeterminate.
c) target _entity_reference shal referto entity identifiers defined in atarget schema.
d) Attribute references of themap_attr _decl stnt |i st shall refer to attributes of entities

identifiedinthet arget _entity _reference.

EXAMPLE 26 — Inthefollowing, an instance of application_context is created in the target data
set provided that the entity extent of i t em(an entity type in a source schema) contains at least one
instance.

CREATE APPCNT | NSTANCE_OF application_cont ext
WHERE S| ZEOF(EXTENT(item)) > 0;

application :="";

END_CREATE;

9.8 Constant declaration

Constants may be defined for use within the WHERE language element o a view or map declaration,
or within the body of a map declaration or algorithm.

Constant declarations are as defined in 1SO10303-11:1994 clause9.4.

9.9 Function declaration

Functions may be defined for use within the WHERE language element o a view or map declaration,
or within the body of a map declaration.

Function declarations are as defined in 1SO10303-11:1994 clause9.5.1.

34

© 1SO WG11 N103 - | SO/NWI 10303-14

9.10 Procedure declaration

Procedures may be defined for use within the body of a map declaration.

Procedure declarations are as defined in 1S010303-11:1994 clause9.5.2.

9.11 Ruledeclaration
Rules may be defined for use within the SCHEMA_VIEW and SCHEMA_MAP language element.

Rule declarations are as defined in 1SO 10303-11:1994 clause 9.6.

9.12 Typemap declaration

A type map declaration specifies how a value of a defined type is mapped to a value of another type
within the scope of a schema map.

Syntax:

111 type_nmpping_stm = TYPE_MAP type_reference FROM type_reference ';'
type_map_stmt _body type_map_stnt _body END TYPE_MAP ' ;'

110 type_nap_stnt_body = [schema_ref '.'] base_type ':=
type_assgnnt _expr ';'

EXAMPLE 27 — The following specifies the mapping between the typesdol | ar and dmar k.
The target type dmar k is mapped to the source type dol | ar by multiplying dol | ar with the
factor 1. 5 to derive dmar k. Any attribute assignment where a target attribute of typednmar k is
mapped an expression of type dollar, the first type map_stmt_body is applied.

TYPE_MAP dmar k FROM dol | ar;
dmark := 1.5 * doll ar;
dollar := dmark / 1.5;

END_TYPE_NAP;

The mapping is applied whenever the map_attr_expression evaluates to one of the base_types declared
in the type map_stmt_body and the map attribute is declared to be of the other type_map_stmt_body
base types. The appropriate type_map_stmt_body is applied to the value of the map attribute_expr and
the resulting value is assigned.

Rules and restrictions:

a) base t ype shall adefined datatype.

35

| SO/NWI 10303-14 - WG11/ N103 © 180

10. Expressions

10.1 Overview

Expressions are combinations of operators, operands, and function calls that are evaluated to produce a
value.

Precedence of operators and the order of evaluation of expressions are as defined in
SO 10303-11:1994 clausel2. [POD replace this with the table, extended with @].

Entity constructors create instances that are local only to the function or procedure and do not exist in
either the target or the source.

10.2 View call

A view call is an expression that evaluates to a view instance or aggregate of view instances. The view
call provides a means to access a view instance through arguments corresponding to its binding
instance (when no IDENTIFIED_BY is defined) or IDENTIFIED_BY language element expressions
(when IDENTIFIED_BY is defined). If no view instance corresponds, the call evaluates to indetermi-
nate. A view call identifies a single partition of a view; if the view contains more than one partition, a
partition_qualification shall be present. When no IDENTIFIED_BY language element is present in the
partition, the number, type, and order of the actual parameters shall agree with that of the source param-
eters of the FROM language element in the partition. When an IDENTIFIED_BY language element is
present, the number, type and order of the actual parameters shall agree with that of the expressions of
the IDENTIFIED_BY langauge element.

A view call referencing a constant partition shall be passed an empty parameter list.

Syntax:

119 viewcall =viewreference [partition_qualification] '(' expression {
",' expression} ')’

36

© 1SO WG11 N103 - | SO/NWI 10303-14

EXAMPLE 28 — Thisexampleillustrates the use of aview call to define a relationship between
two view data types. The IDENTIFIED_BY language element in the person_view specifies one
expression, a. cr eat or ; view callsto person_view will therefore be supplied with one argument,
a STRING which is also the creator attribute of an approval entity instance. The IDENTIFIED_BY
clause in this view also serves to ensure the uniqueness of person_view instances (i.e. no two view
instances will have the same name attribute).

SCHEMA_VI EW exanpl e;
VI EW approver
PARTI TI ON person_part;
FROM a : approval; p : person;
WHERE a. creator = p.nane;
| DENTI FI ED_BY a. creator;
SELECT
approver _id : |INTEGER := p.id;
PARTI TI ON org_part;
FROM a : approval; o : organi zation;
WHERE a. creator = 0. nane;
| DENTI FI ED_BY a. creator;
SELECT
approver _id : INTEGER := o0.id;
END_VI EW

VI EW desi gn_order;
FROM a : approval;
SELECT
id: STRING := a.id;
approved_by : approver :=
approver\person_part(a.creator);
END_VI EW
END_SCHEMA VI EW

SCHEMA src_schens;
ENTI TY approval ;

id: STRING

creator : STRI NG
END_ENTI TY;
ENTI TY person;

name : STRI NG

id: | NTECGER,
END_ENTI TY;
END_SCHEMA;
(* Source data set in |SO 10303-21 form *)
#l=approval ('a_1',"'Jones');
#2=approval (‘a_2','Smth');
#3=approval ('a_3',"'Jones');
#4=person(' Jones', 123);
#5=person(' Sm th', 234);

37

| SO/NWI 10303-14 - WG11/ N103 © 180

(* Resulting view instances in | SO 10303-21 form*)
#101=approver (123);

#102=approver (234);

#103=desi gn_order('a_1', #101);
#104=design_order('a_2', #102);

#105=desi gn_order (' a_3', #101);

If one or more of the actual parameters is indeterminate, the result of the view call isa SET containing
those view instances of the view extent that correspond to the non-indeterminate parameter values pro-
vided. If no view instances correspond the view call evaluates to indeterminate.

EXAMPLE 29 — In the following, the various versions associated with a part are collected by
using a partial explicit binding. Returned by the explicit binding call version_and_its product is
the subset of the extent for which the second component of the binding is equal to the specified
product instance.

VI EW part ;
FROM (p : product)
SELECT
versions : SET OF version_and_its_product
= version_and_its_product(?, p);
END_VI EW

10.3 Map Call

A map call is an expressionthat evaluates to atarget entity instance. A map call identifies a single par-
tition of a map; if the map contains more than one partition, a partition_qualification shall be present.
When no IDENTIFIED_BY language element is present in the partition, the number, type, and order of
the actual parameters shall agree with that of the source parameters of the FROM language element in
the partition. When an IDENTIFIED_BY language element is present, the number, type and order of
the actual parameters shall agree with that of the expressions of the IDENTIFIED_BY langauge ele-
ment.If the view call references a constant partition, then a empty parameter list shall be passed.

Syntax:
66 map_call = target_paranmeter_ref [map_or_partition_qualification] ' ('
expression { ',' expression } ')' .
70 map_or_partition_qualification ="' @ map_ref | | '@ map_ref

partition_ref

Rulesand restrictions:

38

a) target paraneter_ref shal refer to a parameter reference declared in the MAP refer-
enced asmap_r ef.

© 1SO

WG11 N103 - | SO/NWI 10303-14

EXAMPLE 30 — This example illustrates the use of a map call to define arelationship between

entities in the target schema.

(* source schemn *)
SCHEMA sour ce;
ENTI TY appr oval
id: STRING
creator : STRI NG
END_ENTI TY;
END_SCHEMA;

SCHEMA t ar get ;

ENTITY person;
id: STRING

END_ENTI TY;

ENTI TY desi gn_or der
id: STRI NG
approved_by : person;

END_ENTI TY;

MAP_SCHEMA exanpl e;
MAP person_map AS p : target. person;
FROM a : approva
| DENTI FI ED_BY a. creator
SELECT
p.id := a.creator;
END_MAP;

MAP design_order _map AS d : target.design_order;
FROM a : approval

SELECT

d.id := a.id;

d. approved_by : = p@erson(a.creator); -- explicit binding
END_MAP;

END_MAP_SCHEMA;

(* source instance set witten as |1SO 10303-21 instances *)

#1 = approval ("a_1" ,"mller’);
#2 = approval ('a_2’,’jones’);
#3 = approval ("a_3 ,"mller’);

(* Resulting target instances in |ISO 10303-21 form*)
#101l=person(‘Jones’);

#102=person(‘Smth’);

#103=desi gn_order(‘a_1", #101);

#104=desi gn_order('a_2',#102);

#105=desi gn_order(‘a_3", #101);

39

| SO/NWI 10303-14 - WG11/ N103 © 180

A partial explicit binding isan explicit binding in which one or more of the parameters isindeterminate.
The result of a partial explicit binding is the subset of the extent that matches the parameter values that
are provided. If the subset is empty, the result of the partial explicit binding shall be indeterminate.

EXAMPLE 31 — In the following, the various versions associated with a part are collected by
using a partia explicit binding. Returned by the explicit binding call version_and_its product is
the subset of the extent for which the second component of the binding is equal to the specified
product instance.

VI EW part;
FROM (p : product)
SELECT
versions : SET OF version_and_its_product
.= version_and_its_product(?, p);
END_ VI EW

VI EW version_and_its_product;
FROM (pdf : product _definition formation, p : product)

VWHERE p :=: pdf.of _product;
SELECT

the_version : product_definition_formation := pdf;
END_ VI EW

10.4 FOR expression

The FOR expression collects the result of iteration of an expression over the elements of an EXPRESS
aggregate. The collection is returned as an EXPRESS aggregate. The FOR expression may be used in
the map_attr_assgnmnt_expr.

The FOR expression iteration mechanism allows each element to be evaluated against a selection crite-
ria. Elements and of the aggregate can be processed step by step, selected, and manipulated.

The FOR expression isintroduced for attribute assignment statements of MAP declarations to process a
set of elements and to assign a set as aresult to the target attribute. For this purpose, an iteration mech-
anism is used where all elements of the set can be processed step by step, selected, and manipul ated.

The iteration of the FOR expression is controlled either by the repeat control known from EXPRESS
(cf., ???). Alternatively, amore declarative approach can be specified using the FOR EACH concept. In
the latter case, the followinglanguage elementsare available.

— The EACH language element defines the (name of the) iterator variable. That is, in each process-
ing step of the loop of the FOR expression, an element of the set is assigned to thisiterator. The set
is determined by the IN- (and the FROM-) language element.

— ThelIN language element specifies the set over which it has to be iterated over. Thisis either an
(entity) extend. In this case the FROM language element is optional. That is, if it shall be iterated
over exact one (entity) extent without further restrictions the FROM language element need not to

40

© 1SO WG11 N103 - | SO/NWI 10303-14

be specified. Alternatively, if it shall be iterated over an extent which is built upon many joined
source extents, the FROM language element (and the WHERE language element) are needed.

In addition to the entity extent, it can also be iterated over an attribute of type AGGREGATE. In
this case, the FROM language element is optional: if the source entity of this attribute to be iter-
ated over is not specified in the FROM language element of the MAP declaration, it shall be spec-
ified in the FROM language element of the FOR expression.

The FROM language element o the FOR expression has the same semantics as the FROM lan-
guage element of the MAP declaration (cf., ???).

The WHERE language element of the FOR expression has the same semantics as the WHERE lan-
guage element of the MAP declaration (cf., ??7?).

The RETURN language element specifies an expression which has to be processed for each ele-
ment during the iteration. All processed elements together build the result aggregate data type
which isreturned to the target attribute.

EXAMPLE 32 — FOR expression.

(* Source schemn *)

ENTI TY product _definition;
product _name : STRI NG
description : STRING

END_ENTI TY;
ENTI TY product _definition_nane;

name . STRI NG,

of product _definition : product _definition;
END_ENTI TY;

(* Target schema *)

ENTI TY conponent;
names : SET [0:7?] OF STRI NG
product _nane : STRI NG
description : STRING

END_ENTI TY;

In this example, the target entity conponent maps to the source entity pr oduct _defi ni ti on and all
instances of pr oduct _defi ni ti on_name which reference one instance of pr oduct _defi niti on
are grouped into the target attribute conponent . names. Thisis specified as follows.

41

| !SO/NWI 10303-14 - WG11/ N103 © 180

Mappi ng definition:
MAP conponent
FROM pd : product_definition

SELECT
description := pd.description;
product nane := pd. product nane;
names : = FOR EACH pdn_i nstance
I'N pdn
FROM pdn : product _definition_name
WHERE pdn. of _product _definition :=: pd
RETURN pdn_i nst ance. nanme
END_MAP;

This example also shows that the scope of the FROM language element of the MAP declaration can be
extended by the FROM language element of an FOR expression within this MAP declaration. That is,
product _defi niti on_nane isnot within the scope of the root entity of the FROM language ele-
ment of the MAP declaration pr oduct _def i ni ti on. Inthis case, the FOR expression specifies the
so-called outer join operation. That is, for each instance of pr oduct _defi ni ti on atarget instance
of conmponent isbuilt independent of the existence of instances of pr oduct _definiti on_name
which references this product _definition. If such instances of
product definition_name do not exist, the value of conmponent . nanes is the empty set.
Otherwise, those instances (resp. the value pr oduct _defi niti on_name. nanme) are assigned to
the attributeconponent . nanes.

The RETURN language element can be nested in order to map attributes which are of type AGGRE-
GATE OF AGGREGATE. Thisis shown in the following example.

EXAMPLE 33 — Nested FOR expression. The example 32 is extended as follows.

Source schema:

ENTI TY product _definition;
(* as defined in Ex. 32 *)

END_ENTI TY;

ENTI TY product _definition_namne;
(* as defined in Ex. 32 *)
END_ENTI TY;

ENTI TY product _definition_val ue;
of _pdn : product _definition_nane;
val ue : STRI NG

END_ENTI TY;

Target schema:

ENTI TY conponent;
values : SET [0:7?] OF SET [0:?] OF STRING
product _nanme : STRI NG
description : STRING

END_ENTI TY;

42

© 1SO WG11 N103 - | SO/NWI 10303-14

In addition to example 32, al instances of pr oduct _defi ni ti on_val ue which reference one instance
of product _definition_nanme are grouped together and are assigned to the inner aggregate of com
ponent . val ues. Thisis specified asfollows.

Mappi ng definition:

MAP conponent
FROM pd : product _definition

SELECT
description := pd.description;
product _name : = pd. product _nane;
names := FOR EACH pdn_instance
I N pdn
FROM pdn : product _definition_nane
WHERE pdn. of _product _definition :=: pd
RETURN FOR EACH pdv_i nstance
I N pdv
FROM pdv : product _definition_val ue
WHERE pdv. of _pdn :=: pdn_instance
RETURN pdv_i nstance. val ue;
END_MAP;

The FOR expression supports parallel iteration (i.e. iteration where two or more iterator variables are
assigned to elements of sets). During each step of the iteration loop, al the iterator variables are
assigned to the next element of the corresponding set. Thisis shown in the following example.

EXAMPLE 34 — Parallel iteration with the FOR expression.

Sour ce schems:
ENTI TY persons;
firstname : SET [0:?] OF STRING
lastname : SET [0:?] OF STRI NG
END_ENTI TY;

Target schemn:
ENTITY set_of persons;

name : SET [0:7?] OF STRING
END_ENTI TY;

It isassumed that per sons. first name[i] correspondstoper sons. | ast nanme[i] and that those
two values have to be concatenated and have to be assigned to set _of _per sons. nane[i].

Mappi ng specification:
MAP set of persons
FROM p : persons
SELECT
name : = FOR EACH firstnane_value IN p.firstname AND
EACH | ast nane_value |IN p.lastname
RETURN firstname_val ue + | astnane_val ue;
END_MAP;

This example also shows that the FROM language element of the FOR expression is optional when it isa

43

I SO/NWI 10303-14 - WG11/ N103 © 180

subset of the FROM language element of the MAP declaration. In this example, no predicates are needed to
select specific elements of the extent which is given by the IN language element. Thus, the WHERE |an-
guage element i s omitted.

If the scope of the extent of the FOR loop (as specified by thef or each_i n_cl ause_ar g resp. the
repeat _control) isempty the FOR loop will be performed zero times.

Syntax:

50 for_expr = foreach_expr | forloop_expr

51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg { AND
variable_id INforeach_in_clause_arg } [fromclause] [where_cl ause]
RETURN map_attr_assgnnt _expr ';'

52 foreach_in_clause_arg = attribute_reference | view attribute_reference
| extent _reference .

54 forloop_expr = FOR repeat_control RETURN map_attr_assgnnt _expr ';'

Rulesand restrictions:

a) The target attribute of the attribute assignment statement where the FOR expression is used in
shall be of type AGGREGATE.

10.5 Conditional expression

This concept is introduced for MAP declarations so that a specified expression is assigned to a target

attribute under some condition (or, else another expression is assigned). The conditional expressions
can be nested.

Syntax:

73 map_cond_attr_expr = | F bool ean_expressi on THEN rmap_attr_assgnnt _expr
[ELSE nmap_attr_assgnnt _expr] END_IF ' ;'

10.6 CASE expression

The CASE expression is similar to the CASE statement of EXPRESS.

44

© 1SO WG11 N103 - | SO/NWI 10303-14

EXAMPLE 35 — CASE expression.

MAP my_appr oval
FROM a : approval

SELECT
status : = CASE a.status OF
"approved’ S
"not approved : -1;
"indeterm ned : O;
OTHERW SE D2,
END_CASE;
END_MAP;
Syntax:

40 case_expr = CASE selector OF { case_expr_action } [OTHERW SE '
expression] END _CASE '
41 case_expr_action = case label { ',' case_label } ':' expression
71 map_case_expr = CASE sel ector OF { rTap case _expr_action } | OTHERW SE
map_attr_assgnm _expr] END _CASE '
72 map_case_expr_action = case_| abel { case_l abel }
map_attr_assgnmt _expr

11. Built-in functions

11.1 Extent - general function
FUNCTI ON EXTENT (R : STRING) : SET OF GENERI G

The EXTENT function returns the population of instances of the type specified by the parameter.

Parameters:

a) Risastring that contains the name of a entity data type or view data type. Such names are qual-
ified by the name of the schema which contains the definition of the type (SCHEMA.TY PE’).

Result: A set containing all instances of the entity datatype or view data type specified in the parame-
ter. It is an error to specify as the parameter a type which is neither a view data type nor an entity data
type defined in a source schema.

45

I SO/NWI 10303-14 - WG11/ N103 © 180

12. Scope and visibility

An EXPRESS-X declaration creates an identifier that can be used to reference the declared item in
other parts of the schema_view (or in other schema_views). Some EXPRESS-X constructs implicitly
declare items, attaching identifiers to them. Anitem is said to be visible in those areas where an identi-
fier for a declared item may be referenced. An item may only be referenced where its identifier is visi-
ble. For the rules of visibility, see clausel0.2 For further information on referring to items using their
identifiers, see clausel?.

Certain EXPRESS-X items define a region (block) of text called the scope of the item. This scope lim-
its the visibility of identifiers declared within it. Scope can be nested; that is, an EXPRESS-X item
which establishes a scope may be included within the scope of another item. There are constraints on
which items may appear within a particular EXPRESS-X item’ s scope.

For each of the items specified in table2 below the following subclauses specify the limits of the scope
defined, if any, and the visibility of the declared identifier both in general terms and with specific
details.

Table2 — Scopeand identifier defining items
Item Scope Identifier
view attribute .
view . .
partition . .
schema view . .

12.1 Scoperules
The general scope rules are as defined in 1SO10303-11:1994.

12.2 Visibility rules
The general visibility rules are as defined in 1SO10303-11:1994.

46

© 1SO WG11 N103 - | SO/NWI 10303-14

12.3 Explicit item rules

The following language elements provide more detail on how the general scoping and visibility rules
apply to the various EXPRESS-X items.

12.3.1 Schema view

Visibility: A schema view identifier isvisible to all other schema views.
Scope: A schema view declaration defines a new scope. This scope extends from the keyword

SCHEMA_VIEW to the keyword END_SCHEMA_VIEW that terminates that schema view declara-
tion.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a
schema_view declaration:

constant;
— function;
- map;
— procedure;
— rule;
— type_map;

— view.

12.3.2 View

Visibility: A view identifier is visible in the scope of the function, procedure, rule, or schema_view in
which it is declared. A view identifier remains visible within inner scopes which redeclare that identi-
fier.

Scope: A view declaration defines a new scope. This scope extends from the keyword VIEW to the
keyword END_VIEW which terminates that entity declaration.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a view
declaration:

— view attribute;

— partition label.

47

| SO/NWI 10303-14 - WG11/ N103 © 180

12.3.3 View partition label

Visibility: A partition label isvisible in the scope of the view in which it is declared.

12.3.4 View attributeidentifier

Visibility: A view attribute identifier is visible in the scope of the view in which it is declared.

13. Interface specification

This clause specifies the constructs that enable items declared in one schema, schema view, or
schema_map to be visible in another schema_view or schema_map. The REFERENCE specification
enables item visibility.

Syntax:
69 map_interface_spec = | MPORT_MAPPI NG schena_map_or _vi ew _ref _or_renane |
REFERENCE r esource_or_rename { ',' resource_or_renanme } | '

89 schema_map_or _view ref_or_renanme = schenma_map_ref _or_renane |
schema_vi ew ref _or_renane .
90 schema_nmap_ref_or _renane = [schema_map_alias_id ':'] schema_map_ref

97 schema_view ref _or_rename = [schema_view alias_id '":"']
schema_vi ew_r ef

A foreign declaration is any declaration which appears in a foreign schema, schema view, or
schema_map (which is not the current schema_view or schema_map).

A foreign EXPRESS or EXPRESS-X item may be given a new name in the current schema_view or
schema_map. The item shall be referred to in the current schema by the new name if given following
the AS keyword. This can be used in order to rename EXPRESS items that would otherwise use
EXPRESS-X reserved words as their identifier.

13.1 Referenceinterface specification

A REFERENCE specification enables the following items, declared in aforeign schema, schema_view,
or schema_map, to be visible in the current schema_view or schema_map:

— View;

— Map;

48

© 1SO WG11 N103 - | SO/NWI 10303-14

- Type_map;
— Constant;
— Entity;

— Function;
— Procedure;

— Type.

The REFERENCE specification gives the name of the foreign schema, schema view, or schema_map,
and optionally the names of EXPRESS or EXPRESS-X items declared therein. If there are no names
specified, all the items declared in the foreign schema, schema_view, or schema_map are visible within
the current schema_view or schema_map.

The schema_ref may be an EXPRESS-X reserved word that is not also an EXPRESS reserved word.

Syntax:
82 reference_cl ause_ext ended = REFERENCE FROM foreign_ref [' ('
resource_or_rename { ',' resource_or_rename } ')"']

53 foreign_ref = schema_ref | schema_view ref | schema_map_ref

Rules and restrictions:

13.2 Implicit interfaces

13.3 SCHEMA_MAP interfaces

A schema_map interface specification identifies the source and target schema and allows items defined
in these schemato be visible within the schema map.

Syntax:

87 schema_map_decl = SCHEMA MAP schema_nap_id target_interface_spec {
target _interface_spec } source_interface_spec { source_interface_spec
} { map_interface_spec } { type_mapping_stm } [constant_decl]
schema_map_body_el ement | i st END _SCHEMA MAP ' ;'

13.3.1 Source schemainterface

The source schema interface specifies the name of the source schema.

49

I SO/NWI 10303-14 - WG11/ N103

Syntax:

100 source_interface_spec = SOURCE schema_ref _or_rename [REFERENCE
resource_or_renanme { ',' resource_or_renanme } |

13.3.2 Target schema interface

The target schemainterface specifies the name of the target schema.

Syntax:

108 target_interface_spec = TARGET schema_ref _or_rename [REFERENCE
resource_or_renanme { ',' resource_or_renanme } |

13.3.3 Map interface

The map interface specifies how one SCHEMA_MAP may reference another.

Syntax:
69 map_interface_spec = | MPORT_MAPPI NG schenma_map_or _vi ew ref _or_renane |
REFERENCE r esource_or_rename { ',' resource_or_renanme } | '

50

© 1SO WG11 N103 - | SO/NWI 10303-14

Annex A
(normative)
EXPRESS-X language syntax

This annex defines the lexical elements of the language and the grammar rules that these elements shall
obey.

NOTE — Thissyntax definition will result in ambiguous parsers if used directly. It has been written so as
to convey information regarding the use of identifiers. The interpreted identifiers define tokens that are ref-
erences to declared identifiers, and therefore should not resolve to simple_id. This requires a parser devel-
oper to enable identifier reference resolution and return the required reference token to a grammar rule
checker.

All of the grammar rules of EXPRESS specified in annex A of 1SO 10303-11:1994 are also grammar
rules of EXPRESS-X. In addition, the grammar rules specified in the remainder of this annex are gram-
mar rules of EXPRESS-X.

A.1 Tokens

The following rules specify the tokens used in EXPRESS-X. Except where explicitly stated in the syn-
tax rules, no white space or remarks shall appear within the text matched by a single syntax rule in the
following clauses.

A.1l.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-X.

NOTE — This subclause follows the typographical convention that each keyword is represented by a syn-
tax rule whose left hand side is that keyword in uppercase.

NOTE — All the keywords of EXPRESS are also keywords of EXPRESS-X
BETWEEN = ' bet ween'
CHO CE = ' choi ce’
CREATE = 'create'.
EACH = 'each'.
ELSIF = "elsif'
END CHO CE = ' end_choi ce'
END CREATE = 'end_create'.
END_FOR "end_for'.
END_MAP "end_nmap' .
END_SCHEMA MAP = 'end_schenma_nap'.
END SCHEMA VI EW = 'end_schena_vi ew .
END TYPE_MAP = 'end_type_nap'.
END VI EW = 'end_vi ew .

N =
NP OO OWwNOOUOMWNLER
I

[EEN
w

51

I SO/NWI 10303-14 - WG11/ N103

14 EXTENT = 'extent'

15 | DENTIFIED BY = "identified_by'.
16 |1 MPORT_MAPPI NG = 'i nport _nmappi ng' .
17 MAP = 'map'.

18 PARTITION = 'partition'.

19 SCHEMA_MAP = 'schema_map'.

20 SCHEMA VI EW = ’'schena_view .

21 SOURCE = 'source'.

22 TARCGET = 'target'.

23 TYPE_MAP = 'type_map'.

24 VIEW = "view .

A.1.2 Character classes

25 digit ='0" | "2 | 2" | "3 | "4 | '5"] ‘'6 | 7] '8
26 letter ='a" | 'b" | "¢ | 'd" | e | "f" | '"g | "h" | i
S L I L e A L
| ru v W x|ty] e
27 simple_id = letter { letter | digit | '_' }

A.1.3 Interpreted identifiers

NOTE — All interpreted identifiers of EXPRESS are also interpreted in EXPRESS-X
28 instance_ref = instance_id .

29 network _ref = network_id .

30 partition_ref = partition_id .

31 schema_map_ref = schema_map_id .

32 schema_view ref = schema_view.id .

33 source_schenma_ref = schema_ref

34 target_schema_ref = schena_ref

35 view attribute ref = view attribute_id .
36 viewref = view.id .

A.2 Grammar rules

37 attr_assgnnt _expr = type_assgnnt_expr | view attr_assgnnt_expr

| map_attr_assgnnt _expr

38 attribute_reference = attribute_ref
| primary_extended attribute_qualifier
39 binding _decl = fromclause] [where_cl ause]

[identified_ by clause].
40 bool ean_expressi on = expression .

52

© IS0

41

42
43

44

45

46
47
48

49
50
51

52

53
54
55
56

57
58

59
60
61

62

WG11 N103 - | SO/NWI 10303-

choi ce_case_expr = CHO CE sel ector OF
case_l| abel {',' case_l abel }
THEN attr_assgnnt _expr ';'
{ case_label {',' case_label }
THEN attr_assgnnt _expr ';"' }
[ELSE attr_assgnmt _expr ';"']
END _CHO CE .
choi ce_expr = choice_if_expr | choice_case_expr
choice_if_expr = CHO CE | ogi cal _expression THEN attr_assgnnt _expr ';
{ ELSIF | ogi cal _expression THEN attr_assgnnt _expr ';
[ELSE attr_assgnnt _expr ";"']
END_CHO CE .
conplex_entity_spec = entity _reference '& entity_reference
{ '& entity_reference }

create_map_decl = CREATE instance_id ':' target_entity reference ';

[WHERE | ogi cal _expression ';"']
map_attr_decl _stm _|ist
END_CREATE ' ;'
entity_instantiation_loop = FOR instantiation_|l oop_control ';’
entity_qualifier ="'." entity_ref

entity reference = [(schema_map_ref | schenma_view ref
| schema_ref) '".'] entity_ ref
extent _reference = source_entity_reference | viewreference
for_expr = foreach_expr | forloop_expr
foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg
{ AND variable_id IN foreach_in_clause_arg }
[fromclause] [where_cl ause]

RETURN map_attr_assgnnt _expr ';
foreach_in_clause_arg = attribute_reference

14

}

| view attribute_reference | extent_reference

foreign_ref = schema_ref | schema_view ref | schema_nmap_ref
forl oop_expr = FOR repeat_control RETURN map_attr_assgnnt _expr ';'

fromcl ause = FROM source_paranmeter { ';' source_paraneter }

sour ce_paranmeter = source_paraneter_id {"'," source_paraneter_id }
extent reference.

i dentified by clause = | DENTI FI ED_BY expression { ',' expression} ';'.

inline_view decl = VIEWfromclause [where_cl ause]
[view project_clause] END VIEW';
instance_id = sinple_id

i nstance_qualifier = '."' instance_ref

i nstanti ation_foreach_control = EACH variable_id
IN source_attribute_reference
[I NDEXI NG variable_id]
{ AND variable_id
IN source_attribute_reference
[INDEXI NG variable_id] }
i nstantiati on_l oop_control = instantiation_foreach_contro
| repeat_control

53

I SO/NWI 10303-14 - WG11/ N103 © 180

63

64

65

66

67

68

69

70

71
72
73

74
75
76
77
78
79
80

81

82

83

84

85

86

54

mep_attr_assgnm _expr = expression | choice_expr | for_expr
| map_call
= map_attri bute_declaration

{ map_attribute_declaration }

map_attribute_declaration = [target_paraneter_ref
[index_qualifer]
[group_qualifier] "."]
attribute_ref [index_qualifier] ':=
map_attr_assgnnt _expr ';

map_attr_decl _stmt _|ist

map_call = target_paranmeter_ref [map_or_partition_qualification]
(' expression { ',' expression} ")
map_decl = MAP nap_id AS target _paraneter { target_paraneter }

((map_decl _body { map_partitions }) | map_decl _body)
END_MAP ' ;'
map_decl _body = [subtype_of clause] bindi ng_dec
{ entity_instantiation_|oop }
map_proj ect _cl ause

mep_i nterface_spec = | MPORT_MAPPI NG schema_map_or _vi ew _ref _or_renane
[REFERENCE resource_or_renane
{ '," resource_or_renane } | ';
map_or _partition_qualification ="' @ map_ref |
| '@ map_ref '.' partition_ref
map_partition = PARTITION partition_id ':" map_decl _body .

mep_partitions = map_partition { map_partition }

map_project _clause = (SELECT map_attr_decl _stnt _list) | (RETURN
expression)

map_reference = [schema_map_ref '.'] map_ref

map_id = sinple_id

map_ref = map_id

partition_id = sinple_id

partition_qualification = '\' partition_ref

pri mary_extended = qualifiable_factor_extended { qualifier_extended }
qualifiable_factor_extended = qualifiable factor | schema_map_ref |
schema_view ref | viewref | map_call | view.call |

view attribute ref | instance_ref

qualifier_extended = qualifier | instance_qualifier | entity_qualifier

| view attribute_qualifier
reference_cl ause_ext ended = REFERENCE FROM f orei gn_ref
["('" resource_or_renane
{',' resource_or_renanme } ")"] ';
schema_alias_id = schema_id .
schema_map_alias_id = schena_map_id
schema_map_body_el enment = function_decl | procedure_dec
| view decl | map_decl | create_map_dec

schema_map_body_el ement _|ist = schema_map_body_el enent
{ schema_map_body_el ement }

© IS0

87

88
89

90

91
92
93
94

95

96

97

98

99

100

101

102

103
104

105
106
107

108

109
110

schema_map_decl =

schema_map_id =

S

WG11 N103 - | SO/NWI 10303-14

SCHEMA_MAP schema_map_i d

target _interface_spec { target_interface_spec }
source_interface_spec { source_interface_spec }
{ map_interface_spec }

{ type_mapping_stm }

[constant_decl]

schema_map_body_el ement _Ii st

END_SCHEMA MAP ' ;'

imple_id

schema_map_or_view ref_or_renane = schema_map_ref_or_renane

| schema_view ref_or_rename .

schema_nmap_ref_or_rename = [schema_map_alias_id ':']

schema_ref _or_rename = [schema_alias_id
schema_view alias_id
schema_vi ew_body_el enent = function_decl | procedure_decl | view decl

schema_nmap_r ef

] schena_ref

schema_view id .

schema_vi ew_body_el enment _|ist = schema_vi ew_body_el enent {
schema_vi ew_body_el enent }

schema_vi ew_decl

SCHEMA VI EW schema_vi ew_ i d {

reference_cl ause_extended } [constant_decl]
schema_vi ew_body_el ement _| i st END_SCHEMA VI EW' ;'

schema_view id =

S

inmple_id

schema_view ref _or_renane = [schema_view alias_id ':"']

schema_vi ew_r ef

source_attribute_reference = attribute_reference |
view attri bute_reference
source_entity reference = entity_reference

source_interface_spec = SOURCE schenma_ref _or_renane

[REFERENCE resource_or_renane
{"',' resource_or_rename }] ;'

source_paranmeter_id = paraneter_id

subt ype_of _cl ause

= SUBTYPE OF ' (' view or_map_reference
{ ', view.or_map_reference } ')

syntax = schema_map_decl | schema_vi ew decl

target _parameter

[target_paraneter_id
{ '," target_paraneter_id } ":']
[AGGREGATE [bound_spec] OF]

target_entity_reference ';

target _paranmeter _id = paranmeter_id
target _paraneter_ref = target_paraneter_id
target _entity reference = entity_reference | conplex_entity spec

target _schema_ref

A

compl ex_entity _spec ')’

target _interface_spec = TARGET schema_ref_or_renane

type_assgnnt _expr

[REFERENCE resource_or_renane
{ ', resource_or _renanme }] ';

= expression | choice_expr

type_map_stm _body = [schema_ref '.']

base type ':=' type_assgnmt _expr ';

55

I SO/NWI 10303-14 - WG11/ N103 © 180

111

112
113

114
115

116
117
118

119

120

121
122
123
124
125
126

127

A.3

128
129
130
131
132
133

134
135
136

56

type_mapping_stm = TYPE_MAP
type_reference FROM type_reference ';
type_map_stm _body type_map_stnt _body
END TYPE_MAP ' ;

type_reference = [schema_ref '.'] type_ref
view attr_assgnm _expr = expression | choice_expr | inline_view decl
| view_call

view attr_decl _stm _list = view attribute_dec
{ view attribute_decl }

view attribute_decl = view attribute_id ':' [source_schema_ref '.']
base type ':='" view attr_assgnnt_expr ';

view attribute_id = sinple_id

view attribute_qualifier ='.' view attribute_ref

view attribute_reference = view attribute_ref
| primary_extended view attribute_qualifier
view call = viewreference [partition_qualification]
"(' expression { ',' expression } ")
view decl = VIEWview id [: base_type][supertype_rule] [

subtype_of _clause] ';

(view partitions | view decl _body)
END VIEW' ;'
vi ew_decl _body = binding_decl view project_clause
view id = sinple_id
view or_nmap_reference = view reference | map_reference
view partition = PARTI TION partition_id ';' view decl _body .

view partitions = view partition { view partition }
view project_clause = (SELECT view attr_decl _stnmt list) | (RETURN
expression)

view reference = [(schema_map_ref | schema_viewref) '.']
vi ew_r ef

EXPRESS Syntax

add_like_ op ="+] "-" | OR|] XOR .

bound_1 = nuneric_expression

bound_2 numeri c_expressi on

bound_spec = '[' bound_1 ':' bound_2 ']

built_in_constant = CONST E| PI | SELF | '?

built _in _function = ABS | ACOS | ASIN | ATAN | BLENGITH | COS | EXI STS
| EXP | FORMAT | HIBOUND | HI I NDEX | LENGTH | LOBOUND
| LONDEX | LOG| LOE | LOGIO | NVL | ODD | ROLESOF
| SIN| SIZEOF | SQRT | TAN | TYPECOF | USEDI N | VALUE
| VALUE IN | VALUE_UNI QUE

constant_factor = built_in_constant | constant _ref

enuneration_reference = [type_ref '.'] enuneration_ref

expression = sinmple_expression [rel _op_extended sinple_expression]

| ©1SO WG11 N103 - | SO/NWI 10303-14

137 factor = sinple_factor ['**' sinple_factor]

138 | ogical _expression = expression .
139 numeric_expression = sinple_expression .
140 repeat_control = [increment_control] [while_control]

[until_control]
= aggregate_initializer | entity_constructor
| enuneration_reference | interval | query_expression
| ([unary_op] ('(' expression ')' | primry))

141 sinmple_factor

A.4 Crossreferencelisting

(informative)
Bibliography

EXPRESS-V language (ISO TC184/SC4/WG5 N251).
EXPRESS-M language (1SO TC184/SC4/WG5 N243).
BRITTY language.

Wirth, Niklaus, ” What can we do about the unnecessary diversity of notations for syntactic defini-
tions?,” Communications of the ACM, November 1977, v. 20, no. 11, p. 822.

57

| SO/NWI 10303-14 - WG11/ N103 © 180

Annex B
(normative)
EXPRESS-X to EXPRESS Tranformation Algorithm

This annex describes how a collection of view declarations may be transformed into a collection of
EXPRESS entity declarations suitable for representing the results of an EXPRESS-X execution. The
transformation is described as an algorithm taking the text of aview declaration as input and producing
the text of an entity declaration as output. The algorithm is given here for specification purposes only,
not to prescribe a particular implementation.

The transformed entities are assumed to exist in a uniquely named schema, into which all necessary for-
eign declarations have been interfaced.
Algorithm:

a) If the view declaration is a SELECT view (i.e., does not define any view attributes), skip the
declaration.

b) Changethe keyword VIEW to ENTITY.

¢) Delete entirely any FROM ,WHERE, and/or IDENTIFIED_BY clauses. Delete only WHERE
clauses in the header; do not delete constraint where clauses.

d) Deletethe keyword SELECT.

€) If the view declaration contains partitions, delete entirely all but the first partition declaration,
and delete the keyword PARTITION and the partition identifier (if any) from the first partition
declaration.

f) Delete the assignment operator and expression for each view attribute.

g) Change the keyword END_VIEW to END_ENTITY.

58

© 1SO WG11 N103 - | SO/NWI 10303-14

EXAMPLE 36 —

VI EW a ABSTRACT SUPERTYPE;
PARTI TI ON one:
FROM b: one, c:two

WHERE condl
cond2;
SELECT
X . attrl := expressionl;
y . attr2 := expression2

PARTI TI ON t wo:
FROM d: two, e:three

VWHERE cond3;
cond4;
SELECT
X . attrl := expression3;
y . attr2 := expression4;
END_VI EW

istransformed into the following EXPRESS entity declaration:

ENTI TY a ABSTRACT SUPERTYPE
X . attrl;
y : attr2;

END_ENTI TY;

EXAMPLE 37 —

VI EWb SUBTYPE OF (a);
PARTI TI ON one:
WHERE cond5;
SELECT

z . attr3 := expressionb;
PARTI TI ON t wo:
WHERE cond6;
SELECT

z . attr3 := expression6
VWHERE

WR2 : rul e_expression2;
END VI EW

istransformed into the following EXPRESS entity declaration:

ENTITY b SUBTYPE OF (a);
z . attr3;
VWHERE

WR2 : rul es_expression2;
END_ENTI TY;

59

| SO/NWI 10303-14 - WG11/ N103 © 180

Annex C

13.3.3.1 Push mapping

An implementation shall be said to be a push mapping implementation if it meets all of the following
criteria:

— The mapping engine accepts one or more source data sets, and produces one or more output data
sets.

— The output data sets are derived from the input data sets by the execution and evaluation of all of
the VIEW and MAP declarations.

— Every instance in the source data sets is mapped as specified in the mapping schema into the out-
put data sets.
13.3.3.2 Pull mapping

An implementation shall be said to be a pull mapping implementation if it meets all of the following
criteria

— The mapping engine accepts one or more source data sets.

— Specified target data instances, and only those specified, are derived on demand from the input
data sets by the execution and evaluation of the appropriate VIEW or MAP declarations.

NOTE — This part of 1SO 10303 does not define how VIEW / MAP declarations are selected for pull
mapping.
13.3.3.3 Support of constraint checking

An implementation shall be said to support constraint checking if it implements the concepts described
in clause 9.6 of 1SO 10303-11:1994 against entity instances in target populations and against view
instances in the view extents.

NOTE — The evaluation of constraints has no effect on execution.

Propagation of updates is not possible in situations where any of the following hold:

— Theview / target entity is derived from / mapped to two or more source entities by applying ajoin
operation. (For example, the view / target entity per son_i n_dept corresponds to the source
entities per son and depart nent where the join condition person.id = depart-
ment . per son_i d evaluatesto true.)

— Duplicates (with respect to value equivalence of attributes) which exist in the source data are elim-
inated in the view / target data.

— View / target attributes are derived from / mapped to source schema elements by applying mathe-

60

| ©1SO WG11 N103 - | SO/NWI 10303-14

matical expressions that are not mathematically invertible.
— Theview / target schema defines additional subtypes which do not exist in the source schema(s).

— Subtypes which are defined in the source schema(s) are projected (i.e., not contained) in the view /
target schema.

— The sort order of source attributes of type AGGREGATE is eliminated in the view / target schema.

— Duplicates (with respect to value equivalence) of elements of source attributes of type AGGRE-
GATE are eliminated in the view / target schema.

— A single source entity corresponds to a network of interconnected view / target entities (by rela-
tionships or equivalence of attribute val uesl).

1. Thelatter kind of relationship is comparable to primary key - foreign key relationshipsin the relational
datamodel.

61

| SO/NWI 10303-14 - WG11/ N103

62

